💻
Prompt Engineering Guide
  • Prompt Engineering Guide
  • Introduction
    • Introduction
    • What is an LLM
    • Soekia - What is an LLM
    • ChatGPT Models
    • What is a prompt?
    • Prompt Categories
    • Good prompting
    • Misconceptions about LLM's
  • Configuring ChatGPT
    • ChatGPT Configuration
  • Text Prompts
    • Prompt Frameworks
    • Roles
    • Prompt Cheat Sheet
    • Output Formats
    • Copy of Output Formats
    • Prompt Techniques
    • Prompt Refinement
    • Prompt Patterns
    • Temperature Parameter
  • Custom GPTs
    • Introduction to Custom GPTs
    • The GPT Store
    • Step-by-Step Guide to Creating a Custom GPT
    • Testing and Refining Your Custom GPT
    • Use Cases
    • TASKS
    • Scheduled Tasks
  • Appendix
    • Prompting Terms
    • About
    • Chorus
  • References
  • Hack and Track
  • FAQ
  • GPT4o Announcement
  • Exercises
    • Excercise: Geopandas
  • Group 1
    • Projekte
  • Write like me
Powered by GitBook
On this page
  1. Introduction

What is an LLM

PreviousIntroductionNextSoekia - What is an LLM

Last updated 4 months ago

A Large Language Model (LLM) is an AI system trained on massive datasets to understand, process, and generate language. Here’s an overview of how it works:


1. Core Principle: Statistical Pattern Recognition

LLMs are built on the idea that language is not random but follows specific patterns and structures. These models analyze vast text corpora to identify statistical relationships between words, sentences, and contexts.


2. Neural Networks as the Foundation

An LLM is typically a neural network, often a transformer model (like GPT or BERT). This architecture is designed to:

  • Understand context within text: Words or sentences are analyzed in relation to preceding and following words.

  • Model relationships between words: For instance, an LLM recognizes that "bank" can mean both a seating area and a financial institution, depending on context.


3. Training an LLM

LLMs are trained using techniques like supervised learning or self-supervision. During training:

  • Data source: Billions of texts from books, articles, websites, and other sources serve as training material.

  • Goal: The model attempts to predict the next word or sequence based on the given context. For example:

    • Input: “The sun rises in the east and sets in the …”

    • Model: “west.”

  • Through repeated training, the model adjusts its internal parameters (weights) to make increasingly accurate predictions.


4. Tokenization: Converting Language into Numbers

Since computers cannot understand language directly, text is divided into tokens (smaller units like words, syllables, or letters).

  • Each token is converted into a number.

  • These numbers are processed through mathematical operations and weights in the neural network.


5. Context Understanding: Attention is Key

Transformer models leverage a concept called self-attention:

  • They analyze which parts of a sentence are most important for understanding context.

  • Example: In the sentence “The dog chased the cat because it was fast,” the model identifies that “it” refers to “the cat.”


6. Text Generation

When generating text, the model uses:

  • Probabilities: It calculates which word is most likely to follow.

  • Creativity: By occasionally selecting less probable options, it produces diverse and creative responses.


7. Optimization through Fine-Tuning

After training, an LLM is often adapted for specific applications, such as:

  • Fine-tuning: Adjusting the model using specialized datasets for fields like medicine or law.

  • In-Context Learning: The model learns through examples included in the prompt.


Summary

An LLM works by recognizing and applying patterns in language. It functions like a highly advanced text prediction machine that has learned to understand words, meanings, and relationships to create meaningful content.

Fun Fact

Explain the function of an LLM to a 5th Grader

ChatGPT

Alright, imagine a giant robot librarian who knows a ton about everything because it has read every book, website, and story ever written. This robot doesn't just memorize words; it learns how to talk and answer questions like a real person.

When you ask it a question, it doesn’t give you the exact book or website. Instead, it thinks really fast about everything it knows and comes up with the best answer, like connecting puzzle pieces to give you just what you need.

So, a Large Language Model (LLM) is like this super-smart robot librarian. It uses its "brain" (a computer program) to help people with writing stories, solving problems, or just having a chat. Cool, right? 😊

4o

Du:

erkläre es masterstudierenden

ChatGPT:

Ein Large Language Model (LLM) ist ein KI-Modell, das mit einer enormen Menge an Textdaten trainiert wurde, um Sprache zu verstehen und zu generieren. Es basiert auf tiefen neuronalen Netzen, typischerweise einer Transformer-Architektur, und ist in der Lage, komplexe sprachliche Muster und Zusammenhänge zu erkennen.

Die Hauptfunktion eines LLM ist die Verarbeitung natĂźrlicher Sprache (Natural Language Processing, NLP), was bedeutet, dass es menschliche Sprache interpretieren, analysieren und generieren kann. Dies ermĂśglicht eine Vielzahl von Anwendungen, wie z.B.:

  • Textgenerierung: Schreiben von Texten, Stories, oder Code-Snippets.

  • Frage-Antwort-Systeme: Beantwortung spezifischer Anfragen, basierend auf dem Wissen, das im Modell eingebettet ist.

  • Übersetzungen: Automatische Übersetzung zwischen verschiedenen Sprachen.

  • Dialogsysteme: Simulieren natĂźrlicher Unterhaltungen in Chatbots.

Die Leistungsfähigkeit eines LLM kommt von seiner Fähigkeit, Muster und Kontext in riesigen Datensätzen zu lernen. Anstatt nur WÜrter zu zählen oder statische Regeln zu verwenden, erkennt ein LLM tiefere Bedeutungen, indem es WÜrter, Sätze und Absätze in Vektoren (mathematische Darstellungen) ßbersetzt und diese Beziehungen modelliert.

Ein LLM hat jedoch auch Einschränkungen:

  • Es versteht den Inhalt nicht wirklich, sondern erzeugt Antworten basierend auf Wahrscheinlichkeiten.

  • Es ist auf die Qualität und den Umfang der Trainingsdaten angewiesen.

  • Es kann Fehlinterpretationen oder sogenannte Halluzinationen erzeugen, wenn es Informationen erfindet.

Zusammengefasst: Ein LLM ist ein leistungsstarkes Werkzeug, das menschliche Sprache auf Basis von Wahrscheinlichkeiten modelliert und dadurch kreative und praktische LĂśsungen fĂźr sprachbezogene Probleme liefert.

https://www.scalifiai.com/blog/what-is-large-language-model-llm